Synthesis of HCN and HNC in Ion-Irradiated N₂-Rich Ices

M.H. Moore
NASA Goddard Space Flight Center

R.L. Hudson

Eckerd College and NASA Goddard Space Flight Center

R.F. Ferrante
US Naval Academy and NASA Goddard Space Flight Center

Near-IR observations reveal that nitrogen-rich ice containing small amounts of methane, CH₄, and carbon monoxide, CO, is abundant on the surfaces of Triton, a moon of Neptune, and Pluto (Cruikshank et al.. 1993; Owen et al., 1993). N₂-rich apolar ices are also possible in some interstellar environments (Ehrenfreund et al., 1998). To investigate the radiation chemical behavior of N₂-dominated ices we performed a systematic IR study of ion-irradiated N₂-rich ices containing CH₄ and CO. Experiments at 18 K, showed that HCN, HNC, and the reactive molecule diazomethane, CH₂N₂, formed along with several radicals. NH₃ was also identified in irradiated N₂ + CH₄. Comparing results from similarly photolyzed ices (Bohn et al., 1994) shows that the significant difference between radiolysis and photolysis of these N₂-dominated ices is that photolyzed ices do not form detectable HCN and HNC. Our experiments examined different N₂/CH₄ ratios, the half-life of CH₄, possible HCN and HNC formation routes, and competing pathways in the presence of CO. Intrinsic band strengths (A(HCN) and A(HNC)) were measured and used to calculate nearly equal values of HCN and HNC yields in N₂+CH₄ irradiated ices. Low temperature results apply to interstellar ices.

Reaction products that appear at 30-35 K are also expected to form and survive on the surfaces of Triton and Pluto and interstellar grains. We examined the evolution of ice features as species undergo acid-base (acids such as HCN, HNC, HNCO and a base NH₃) reactions triggered by warming from 18 K to 30-35 K. We identified anions (OCN⁻, CN⁻ and N₃⁻) attributed to relatively stable salts in ices where NH₄⁺ is the likely cation. These results also have an astrobiology implication since many of these products (HCN, HNCO, NH₃, NH₄OCN, and NH₄CN) are reactants used in synthesis studies of bio-molecules such as amino acids and peptides.

References:

Cruikshank et al. 1993. Science **261**, 742. Owen et al. 1993. Science **261**, 745. Ehrenfreund, P. et al. 1998. Faraday Discuss. **109**, 463. Bohn et al. 1994. Icarus **11**, 151.

Acknowledgments:

This work was carried out under the auspices of the Space Astrophysics Research and Analysis and Laboratory for Planetary Atmospheres Programs.